Peptide transporters

Peptide transporters are the major route of dietary peptide absorption in the small intestine and kidneys. In humans they belong to the Solute Carrier (SLC) 15 gene family and are called PepT1 and PepT2. Both PepT1 and PepT2 are of significant pharmaceutical interest due to their ability to actively uptake a number of clinically important drugs, such as beta-lactam antibiotics, antivirals and HIV protease inhibitors. Recent developments in drug delivery technology have targeted PepT1 and PepT2 to improve the pharmacokinetic properties of several drug molecues, including their uptake and retention within the body. The attachment of amino acids or small peptides to drug molecules creates a pro drug, which is then recognized by PepT1 and PepT2 and transported into the body following oral administration.

Prodrug mediated transport via PepT1

This strategy significantly improves the pharmacokinetic properties of drug molecules, by increasing intestinal absorption and reducing breakdown and excretion. The potential of utilizing PepT1 and PepT2 as universal drug delivery and retention systems represents a profound and transformative new development in transporter mediated drug delivery.

A key aim of research in the group is to provide novel insights into the molecular details underpinning peptide and drug recognition  within the SLC15 family and use the insights gained to develop novel strategies for drug and prodrug delivery.

Since determining the first crystal structure of a peptide transporter in 2011 we have continued to expand our understanding of this important SLC family, recently reviewed here.

Recently we determined the cryo-EM structure of PepT2, revealing the mechanism for peptide and prodrug recognition. This structure builds on several previous studies, including our study reporting the extracellular domains interact with the intestinal protease trypsin to increase dietary protein absorption in the small intestine.

ECD_2
Model of the mammalian peptide transporters interacting with the intestinal protease trypsin.

To understand the molecular basis for substrate recognition we also determined the crystal structure of the plant nitrate transporter, NRT1.1. Although a member of the SLC15 family, this protein has adapted to recognise nitrate in place of peptides, yet still retains much of the proton coupling machinary. Our structure and associated biochemical work also revealed a phosphorylation driven kinetic switch, that functions in vivo to regulate the Km of nitrate transport.

We are continuing to discover more details concerning the molecular basis for proton coupled peptide transport. Previous studies include understanding the role of water wires in facilitating proton movement within the binding site and our discovery that certain members of the family can transport peptides using variable proton stoichiometries, which may help to explain why peptide transport in eukaryotes is still proton coupled.

Our current work is focused on drug complexes and the recognition of xenobiotics in the mammalian transporters.